Result: | |
The Standard Deviation Calculator to calculate common measure of the spread of a data set, it is a data analysis. The calculator could give you No.of Inputs, Mean, Standard Deviation(SD), Population Standard Deviation(PSD), Variance(SD), Variance(PSD) of a given input values of data set.
For example, when given a data set 5,20,40,80,100, the result will be:
Total Inputs(N) =(5,20,40,80,100) Total Inputs(N)=5 Mean(xm)= (x1+x2+x3...xN)/N Mean(xm)= 245/5 Means(xm)= 49 ------------------------------------------- SD= sqrt(1/(N-1)*((x1-xm)^2+(x2-xm)^2+..+(xN-xm)^2)) =sqrt(1/(5-1)((5-49)^2+(20-49)^2+(40-49)^2+(80-49)^2+(100-49)^2)) =sqrt(1/4((-44)^2+(-29)^2+(-9)^2+(31)^2+(51)^2)) =sqrt(1/4((1936)+(841)+(81)+(961)+(2601))) =sqrt(1605) =40.0625 Variance=SD^2 Variance=40.0625^2 Variance=1605 ------------------------------------------- PSD= sqrt(1/(N)*((x1-xm)^2+(x2-xm)^2+..+(xN-xm)^2)) =sqrt(1/(5)((5-49)^2+(20-49)^2+(40-49)^2+(80-49)^2+(100-49)^2)) =sqrt(1/5((-44)^2+(-29)^2+(-9)^2+(31)^2+(51)^2)) =sqrt(1/5((1936)+(841)+(81)+(961)+(2601))) =sqrt(1284) =35.8329 Variance=SD^2 Variance=35.8329^2 Variance=1284