Standard Error Calculator | ||
| ||
Result: | |
The Standard Error Calculator to calculate the the method of measurement or Standard Error.
where
n is the size (number of observations) of the sample.
s is the sample standard deviation.
For example, when data set is {5,20,40,80,100}
Total Inputs(N) =(5,20,40,80,100) Total Inputs(N)=5 Mean(xm)= (x1+x2+x3...xN)/N Mean(xm)= 245/5 Means(xm)= 49 ------------------------------------------- SD= sqrt(1/(N-1)*((x1-xm)^2+(x2-xm)^2+..+(xN-xm)^2)) =sqrt(1/(5-1)((5-49)^2+(20-49)^2+(40-49)^2+(80-49)^2+(100-49)^2)) =sqrt(1/4((-44)^2+(-29)^2+(-9)^2+(31)^2+(51)^2)) =sqrt(1/4((1936)+(841)+(81)+(961)+(2601))) =sqrt(1605) =40.06245124802026 ------------------------------------------- Finding Standard Error Standard Error=SD/ sqrt(N) Standard Error=40.06245124802026/sqrt(5) Standard Error=40.0625/2.2361 Standard Error=17.9165